top of page
Screenshot 2022-12-13 at 12.58.44.png
TheNiche_Photo_digital.png

Articles​​

  1. Chen, E., Pipolo, G., Crailsheim, D., & Morimoto, J. (2025). The Lasting Impact of Social Isolation: Behavioral Insights From Former Pet and Entertainer Chimpanzees in a Sanctuary in Spain. American Journal of Primatology, 87(1), e23715. https://doi.org/10.1002/ajp.23715

  2. Morimoto, J., & Pietras, Z. (2024). Differential amino acid usage leads to ubiquitous edge effect in proteomes across domains of life that can be explained by amino acid secondary structure propensities. Scientific Reports, 14(1), 25544. https://doi.org/10.1038/s41598-024-77319-4

  3. Mitchell, S., Simpson, M., Coulet, L., Gouedard, S., Hambly, C., Morimoto, J., Allison, D. B., Speakman, J. R. (2024) Reproduction has immediate effects on female mortality, but no discernible lasting physiological impacts: a test of the disposable soma theory. PNAS. 121(42), e2408682121. https://doi.org/10.1073/pnas.2408682121

  4. Morimoto, J.* (2024). Expat grants won’t fix Brazilian research. Nature. 629(8011):261. https://doi.org/10.1038/d41586-024-01324-w

  5. Morimoto, J.* (2024). Optimum ratio of dietary protein and carbohydrate that maximise lifespan is shared among related insect species. Aging Cell. 23, e14067. https://doi.org/10.1111/acel.14067

  6. Caron, F. de Souza, Rivadeneira, D., Pie, M., Rabinovich, J., Morimoto, J.* (2024). Range size positively correlates with temperature and precipitation niche breadths but not with dietary niche breadth in Triatomine insects, vectors of Chagas disease. PLoS Neglected Tropical Diseases. 18.8 (2024): e0012430. https://doi.org/10.1371/journal.pntd.0012430

  7. von Hellfedt, Christie, C., Derous, D., Morimoto, J.* (2024) Super food or super toxic? Turmeric and spirulina as culprits for the toxicity effects of food dyes in Drosophila. Journal of Insect Physiology. 153. 104600. https://doi.org/10.1016/j.jinsphys.2023.104600

  8. Laurie, S., Ainslie, L., Mitchell, S., Morimoto, J.* (2024) Turmeric shortens lifespan in houseflies. Frontiers in Insect Science. doi: 10.3389/finsc.2024.1376011

  9. Morimoto, J.* (2023). Nutrigonometry IV: Thales’ theorem to measure the rules of dietary compromise in animals. Scientific Reports. 13, 7466. https://doi.org/10.1038/s41598-023-34722-7

  10. de Assis, T., Nagata, J., Evans, A. A., Morimoto, J., Favaro, L. F. (2024). Influence of environmental factors on reproduction of the invasive Gulf toadfish Opsanus beta (Teleostei: Batrachoididae) in a subtropical estuary. Discover Environment. 2(7) https://doi.org/10.1007/s44274-024-00034-4

  11. McCracken, A., Niazy, N., Turi, S., Arya, V., Kempraj, V., Morimoto, J.* (2023). A novel protein-based fruit fly trap in melon flies Bactrocera cucurbitae for effective pest control management. Journal of Applied Entomology. 00, 1-8. https://doi.org/10.1111/jen.13184

  12. Morimoto, J.,* McDonald, G., Wigby, S. (2023). Social group composition modulates the role of last male sperm precedence in post-copulatory sexual selection. Journal of Evolutionary Biology. https://doi.org/10.1111/jeb.14191

  13. Duffus, N., Echeverri, A., Dempewolf, L., Noriega, J. A., Farrumo, P. R., Morimoto, J.* (2023) The present and future of insect biodiversity conservation in the Neotropics: policy gaps and recommendations. Neotropical Entomology. https://doi.org/10.1007/s13744-023-01031-7

  14. Morimoto, J.,* Conceição, P., Mirth, C., Lihoreau, M. (2023) Nutrigonometry I: using right-angle triangles to quantify nutritional trade-offs in multidimensional performance landscapes. The American Naturalist. 5(201) https://doi.org/10.1086/723599

  15. Morimoto J.* (2022) Uric acid modulates the diet-dependent responses to intraspecific competition in Drosophila larvae. iScience. 25(12). 105598 https://doi.org/10.1016/j.isci.2022.105598

  16. Morimoto, J.* (2022) Nutrigonometry II: experimental strategies to maximise nutritional information in multidimensional performance landscapes. Ecology and Evolution. 12. e9174. https://doi.org/10.1002/ece3.9174

  17. Morimoto, J.,* Conceição, P., Smoczyk, K. (2022) Nutrigonometry III: curvature, area, and differences between performance landscapes. Royal Society Open Science. https://doi.org/10.1098/rsos.221326

  18. Veiner, M., Morimoto, J., Leadbeater, E., & Manfredini, F. (2022). Machine Learning models identify gene predictors of waggle dance behaviour in honeybees. Molecular Ecology Resources. 22, 2248– 2261. https://doi.org/10.1111/1755-0998.13611

  19. Conceição, P., Morimoto, J.* (2022) ‘Holey’ niche: finding holes in niche hypervolumes using persistence homology. Journal of Mathematical Biology. 84, 58. https://doi.org/10.1007/s00285-022-01763-x

  20. Dinh H, Lundbäck I, Than T A., Morimoto J., Ponton F (2022). Sugar-rich larval diet promotes lower adult pathogen load and higher survival after infection in a polyphagous fly. Journal of Experimental Biology. 225(16): jeb243910. https://doi.org/10.1242/jeb.243910

  21. Morimoto J.,­* Wenzel M., Derous D., Henry Y., Colinet H. (2022) The transcriptomic signature of physiological trade-offs caused by larval overcrowding in Drosophila. Insect Science. https://doi.org/10.1111/1744-7917.13113

  22. Morimoto, J.,* Than, A., Nguyen, B., Lundbäck, I., Ponton, F. (2022) Density-by-diet interactions during larval development shape adult life-history trait expression and fitness in a polyphagous fly. The American Naturalist. 5, 199. https://doi.org/10.1086/718910

  23. Morimoto, J.* (2022) Larval crowding effects during early development in the Chinese oak silkmoth Antheraea pernyi (Lepidoptera: Saturniidae). Ecology and Evolution 12, e9283. https://doi.org/10.1002/ece3.9283

  24. Morimoto, J.,* Barcellos, R., Schoborg, T. A., Nogueira, L. P., & Colaço, M. V. (2022). Assessing anatomical changes in male reproductive organs in response to larval crowding using micro-computed tomography imaging. Neotropical Entomology. 51(4):526-535. https://doi.org/10.1007/s13744-022-00976-5

  25. Fritola, M., Salvador C, S., Martins, C. C. M., Ezequiel, B. S., Morimoto, J., Salles, M. J. S. (2022) Intrauterine exposure to omeprazole increases the risk of teeth morphological anomalies in the offspring of a murine model. Odontology. 4(23) 1-8. https://doi.org/10.1007/s10266-022-00749-x

  26. Duffus, N., Morimoto, J.* (2022) Current conservation policies in the UK and Ireland overlook endangered insects and are taxonomically biased towards Lepidoptera. Biological Conservation. 266. p.109464 https://doi.org/10.1016/j.biocon.2022.109464

  27. Morimoto, J.* (2022). Parental ecological history can differentially modulate parental age effects on offspring physiological traits in Drosophila. Current Zoology. https://doi.org/10.1093/cz/zoab081

  28. Morimoto, J.* (2022). Intersectionality of social and philosophical frameworks with technology: could ethical AI restore equality of opportunities in academia? Humanities and Social Sciences Communications. 9, 203. https://doi.org/10.1057/s41599-022-01223-3

  29. Morimoto, J.,* & Kerr, L. (2022) Larval densities of the protected striped lychnis moth Shargacucullia lychnitis (Lepidoptera: Noctuidae) in Buckinghamshire. British Journal of Entomology and Natural History, 34, 3023.1-8. https://doi.org/10.1101/2021.11.25.470005

  30. Morimoto, J.,* Ponchon, A., Sofronov, G., & Travis, J. (2021) Editorial for Research Topic: Applications of Machine Learning to Evolutionary Ecology Data. Frontiers in Ecology and Evolution, 869. https://doi.org/10.3389/fevo.2021.797319

  31. Dinh, H., Nguyen, B., Morimoto, J., Lundback, I., Kumar, S. S., & Ponton, F. (2021). Transgenerational effects of parental diet on offspring development and disease resistance in flies. Frontiers in Ecology and Evolution, 9, 414. https://doi.org/10.3389/fevo.2021.606993

  32. Morimoto, J.* & Ponton, F (2021) Virtual Reality in Biology: Can we become virtual naturalists? Evolution: Education and Outreach,17 (7). https://doi.org/10.1186/s12052-021-00147-x

  33. Duffus, N. E., Christie, C. R., & Morimoto, J.* (2021). Insect Cultural Services: How insects have changed our lives and how can we do better for them. Insects, 12(5), 377. https://doi.org/10.3390/insects12050377

  34. Morimoto, J.,* & Pietras, Z. (2020). Natural history of model organisms: The secret (group) life of Drosophila melanogaster larvae and why it matters to developmental ecology. Ecology and evolution, 10(24), 13593-13601. https://doi.org/10.1002/ece3.7003

  35. Nguyen, B., Dinh, H., Morimoto, J., & Ponton, F. (2021). Sex-specific effects of the microbiota on adult carbohydrate intake and body composition in a polyphagous fly. Journal of Insect Physiology, 134, 104308. https://doi.org/10.1016/j.jinsphys.2021.104308

  36. Nguyen, B., Than, A., Dinh, H., Morimoto, J., & Ponton, F. (2020). Parental microbiota modulates offspring development, body mass and fecundity in a polyphagous fruit fly. Microorganisms, 8(9), 1289 https://doi.org/10.3390/microorganisms8091289

  37. Morimoto, J.,* & Lihoreau, M. (2020). Open data for open questions in comparative nutrition. Insects, 11(4), 236. https://doi.org/10.3390/insects11040236

  38. Morimoto, J.,* & Pietras, Z. (2020). Strong foraging preferences for Ribes alpinum (Saxifragales: Grossulariaceae) in the polyphagous caterpillars of Buff‐tip moth Phalera bucephala (Lepidoptera: Notodontidae). Ecology and evolution, 10(24), 13583-13592. https://doi.org/10.1002/ece3.6981

  39. Than, A. T., Ponton, F., & Morimoto, J.* (2020). Integrative developmental ecology: A review of density-dependent effects on life-history traits and host-microbe interactions in non-social holometabolous insects. Evolutionary Ecology, 1-22. https://doi.org/10.1007/s10682-020-10073-x (*Cover*)

  40. Morimoto, J.* (2020). Addressing global challenges with unconventional insect ecosystem services: Why should humanity care about insect larvae? People and Nature, 2(3), 582-595. https://doi.org/10.1002/pan3.10115

  41. Morimoto, J.,* Nguyen, B., Lundbäck, I., Than, A. T., Tabrizi, S. T., Ponton, F., & Taylor, P. W. (2020). Effects of carbohydrate types on larval development and adult traits in a polyphagous fruit fly. Journal of Insect Physiology, 120, 103969. https://doi.org/10.1016/j.jinsphys.2019.103969

  42. Ponton, F., Morimoto, J., Robinson, K., Kumar, S. S., Cotter, S. C., Wilson, K., & Simpson, S. J. (2020). Macronutrients modulate survival to infection and immunity in Drosophila. Journal of Animal Ecology, 89(2), 460-470. https://doi.org/10.1111/1365-2656.13126

  43. Morimoto, J.* (2020). Bateman (1948): was it all wrong? A comment on Hoquet (2020). Animal Behaviour, 168, e1-e4. https://doi.org/10.1016/j.anbehav.2020.04.020

  44. Morimoto, J.* (2020), Species-level, but not family-level diet breadth predicts geographic distribution of Sydney butterflies. Insect Conservation and Diversity 13: 313-318. https://doi.org/10.1111/icad.12388

  45. Morimoto, J.,* McDonald, G. C., Smith, E., Smith, D. T., Perry, J. C., Chapman, T., Pizzari, T., and Wigby, S. (2019). Sex peptide receptor-regulated polyandry modulates the balance of pre-and post-copulatory sexual selection in Drosophila. Nature communications, 10(1), 1-12. https://doi.org/10.1038/s41467-018-08113-w

  46. Morimoto, J.,* & Lihoreau, M. (2019). Quantifying nutritional trade-offs across multidimensional performance landscapes. The American Naturalist, 193(6), E168-E181. https://doi.org/10.1086/701898

  47. Morimoto, J.,* Nguyen, B., Dinh, H., Taylor, P. W., & Ponton, F. (2019). Crowded developmental environment promotes adult sex-specific nutrient consumption in a polyphagous fly. Frontiers in Zoology, 16(1), 1-11. https://doi.org/10.1186/s12983-019-0302-4

  48. Nguyen, B., Ponton, F., Than, A., Taylor, P. W., Chapman, T., & Morimoto, J.* (2019). Interactions between ecological factors in the developmental environment modulate pupal and adult traits in a polyphagous fly. Ecology and evolution, 9(11), 6342-6352. https://doi.org/10.1002/ece3.5206

  49. Morimoto, J.,* Tabrizi, S. T., Lundbäck, I., Taylor, P. W., & Ponton, F. (2019). Larval foraging decisions in competitive heterogeneous environments accommodate diets that support egg-to-adult development in a polyphagous fly. Royal Society open science, 6(4), 190090. https://doi.org/10.1098/rsos.190090

  50. Morimoto, J.* (2019). Foraging decisions as multi-armed bandit problems: Applying reinforcement learning algorithms to foraging data. Journal of theoretical biology, 467, 48-56. https://doi.org/10.1016/j.jtbi.2019.02.002

  51. Morimoto, J.,* & Baltrus, D. A. (2019). The Extended Genotype: To What Extent? A Comment on Carthey et al. Trends in Ecology and Evolution, 34(3), 186-187. https://doi.org/10.1016/j.tree.2018.12.010

  52. Morimoto, J.,* Senior, A., Ruiz, K., Wali, J. A., Pulpitel, T., Solon-Biet, S. M., Simpson, S., Raunbenheimer, D., and Eberhard, J. (2019). Sucrose and starch intake contribute to reduced alveolar bone height in a rodent model of naturally occurring periodontitis. PLoS One, 14(3), e0212796. https://doi.org/10.1371/journal.pone.0212796

  53. Eberhard, J., Morimoto, J., Wali, J., Ruiz, K., Cogger, V., Solon-Biet, S., Simpson, S., Raunbenheimer, D., and Senior, A. (2019). Periodontal bone loss is not modulated by weight gain in an experimental mouse model of periodontitis. Obesity Research & Clinical Practice, 13(3), 281. https://doi.org/10.1016/j.orcp.2018.11.134

  54. Morimoto, J.,* Nguyen, B., Tabrizi, S. T., Lundbäck, I., Taylor, P. W., Ponton, F., & Chapman, T. A. (2019). Commensal microbiota modulates larval foraging behaviour, development rate and pupal production in Bactrocera tryoni. BMC microbiology, 19(1), 1-8. https://doi.org/10.1186/s12866-019-1648-7

  55. Ponton, F. Morimoto, J., (2019) Links between nutrition, immunity, and infection. In: Encyclopaedia of Animal Behaviour.  2nd Edition. Editors: Prof Jae Chun Choe. Academic Press. ISBN: 978-0-12-813252-4

  56. Morimoto, J.,* Nguyen, B., Tabrizi, S. T., Ponton, F., & Taylor, P. (2018). Social and nutritional factors shape larval aggregation, foraging, and body mass in a polyphagous fly. Scientific reports, 8(1), 1-10. https://doi.org/10.1038/s41598-018-32930-0

  57. Bath, E., Morimoto, J., & Wigby, S. (2018). The developmental environment modulates mating‐induced aggression and fighting success in adult female Drosophila. Functional Ecology, 32(11), 2542-2552. https://doi.org/10.1111/1365-2435.13214

  58. Morimoto, J.,* Simpson, S. J., & Ponton, F. (2017). Direct and trans-generational effects of male and female gut microbiota in Drosophila melanogaster. Biology Letters, 13(7), 20160966. https://doi.org/10.1098/rsbl.2016.0966

  59. Wong, A. C. N., Wang, Q. P., Morimoto, J., Senior, A. M., Lihoreau, M., Neely, G. G., Simpson, S., and Ponton, F. (2017). Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Current Biology, 27(15), 2397-2404. https://doi.org/10.1016/j.cub.2017.07.022

  60. Morimoto, J.,* Ponton, F., Tychsen, I., Cassar, J., & Wigby, S. (2017). Interactions between the developmental and adult social environments mediate group dynamics and offspring traits in Drosophila melanogaster. Scientific Reports, 7(1), 1-11. https://doi.org/10.1038/s41598-017-03505-2

  61. Morimoto, J.,* Pizzari, T., & Wigby, S. (2016). Developmental environment effects on sexual selection in male and female Drosophila melanogaster. PLoS One, 11(5), e0154468. https://doi.org/10.1371/journal.pone.0154468

  62. Morimoto, J.,* & Wigby, S. (2016). Differential effects of male nutrient balance on pre-and post-copulatory traits, and consequences for female reproduction in Drosophila melanogaster. Scientific Reports, 6(1), 1-11. https://doi.org/10.1038/srep27673

Science Communication

Nature Ecology & Evolution Community

American Naturalist Blog

CoverEVEC.jpg
bottom of page